New insights into the transport processes controlling the sulfate-methane-transition-zone near methane vents
نویسندگان
چکیده
Over the past years, several studies have raised concerns about the possible interactions between methane hydrate decomposition and external change. To carry out such an investigation, it is essential to characterize the baseline dynamics of gas hydrate systems related to natural geological and sedimentary processes. This is usually treated through the analysis of sulfate-reduction coupled to anaerobic oxidation of methane (AOM). Here, we model sulfate reduction coupled with AOM as a two-dimensional (2D) problem including, advective and diffusive transport. This is applied to a case study from a deep-water site off Nigeria's coast where lateral methane advection through turbidite layers was suspected. We show by analyzing the acquired data in combination with computational modeling that a two-dimensional approach is able to accurately describe the recent past dynamics of such a complex natural system. Our results show that the sulfate-methane-transition-zone (SMTZ) is not a vertical barrier for dissolved sulfate and methane. We also show that such a modeling is able to assess short timescale variations in the order of decades to centuries.
منابع مشابه
Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis, and methane oxidation.
Genomic markers for anaerobic microbial processes in marine sediments-sulfate reduction, methanogenesis, and anaerobic methane oxidation-reveal the structure of sulfate-reducing, methanogenic, and methane-oxidizing microbial communities (including uncultured members); they allow inferences about the evolution of these ancient microbial pathways; and they open genomic windows into extreme microb...
متن کاملMethane dynamics in Santa Barbara Basin (USA) sediments as examined with a reaction-transport model
Here we describe a new reaction-transport model that quantitatively examines δ13C profiles of porewater methane and dissolved inorganic carbon (DIC) (δCCH4 and δCDIC) in the anoxic sediments of the Santa Barbara Basin (California Borderland region). Best-fit solutions of the model to these data suggest that CO2 reduction is the predominant form of methanogenesis in these sediments. These soluti...
متن کاملModeling of Catalyst Effect on the Reduction Rate Enhancement of Barium Sulfate by Methane and Developing Two Environmentally Friendly Processes
متن کامل
Global dispersion and local diversification of the methane seep microbiome.
Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain...
متن کاملAnaerobic methane oxidation in Black Sea sediments
Anaerobic oxidation of methane (AOM) and sulfate reduction (SRR) were investigated in sediments of the western Black Sea, where methane transport is controlled by diffusion. To understand the regulation and dynamics of methane production and oxidation in the Black Sea, rates of methanogenesis, AOM, and SRR were determined using ra-5 diotracers in combination with pore water chemistry and stable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016